A SSVEP Stimuli Encoding Method Using Trinary Frequency-Shift Keying Encoded SSVEP (TFSK-SSVEP)

نویسندگان

  • Xing Zhao
  • Dechun Zhao
  • Xia Wang
  • Xiaorong Hou
چکیده

SSVEP is a kind of BCI technology with advantage of high information transfer rate. However, due to its nature, frequencies could be used as stimuli are scarce. To solve such problem, a stimuli encoding method which encodes SSVEP signal using Frequency Shift-Keying (FSK) method is developed. In this method, each stimulus is controlled by a FSK signal which contains three different frequencies that represent "Bit 0," "Bit 1" and "Bit 2" respectively. Different to common BFSK in digital communication, "Bit 0" and "Bit 1" composited the unique identifier of stimuli in binary bit stream form, while "Bit 2" indicates the ending of a stimuli encoding. EEG signal is acquired on channel Oz, O1, O2, Pz, P3, and P4, using ADS1299 at the sample rate of 250 SPS. Before original EEG signal is quadrature demodulated, it is detrended and then band-pass filtered using FFT-based FIR filtering to remove interference. Valid peak of the processed signal is acquired by calculating its derivative and converted into bit stream using window method. Theoretically, this coding method could implement at least 2 n-1 (n is the length of bit command) stimulus while keeping the ITR the same. This method is suitable to implement stimuli on a monitor and where the frequency and phase could be used to code stimuli is limited as well as implementing portable BCI devices which is not capable of performing complex calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-target SSVEP-based BCI using Multichannel SSVEP Detection

Spatial filtering method and fast Fourier transform (FFT) based spectrum estimation method are applied to reveal the presence of steady state visual evoked potential (SSVEP) in multiple-electrodes electroencephalogram (EEG) signals used in Brain-Computer Interface (BCI) system. The SSVEP responses are elicited by visual stimuli in the form of flickering light emitting diode (LED) array and comp...

متن کامل

Square or Sine: Finding a Waveform with High Success Rate of Eliciting SSVEP

Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system ach...

متن کامل

On the stimulus duty cycle in steady state visual evoked potential

Brain-computer interfaces (BCI) are useful devices that allow direct control of external devices using thoughts, i.e. brain’s electrical activity. There are several BCI paradigms, of which steady state visual evoked potential (SSVEP) is the most commonly used due to its quick response and accuracy. SSVEP stimuli are typically generated by varying the luminance of a target for a set number of fr...

متن کامل

Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI

BACKGROUND Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) generate weak SSVEP with a monitor and cannot use harmonic frequencies, whereas P300-based BCIs need multiple stimulation sequences. These issues can decrease the information transfer rate (ITR). NEW METHOD In this paper, we introduce a novel hybrid SSVEP-P300 speller that generates dual-frequency S...

متن کامل

Using frequency tagging to quantify attentional deployment in a visual divided attention task.

Frequency tagging is an EEG method based on the quantification of the steady state visual evoked potential (SSVEP) elicited from stimuli which flicker with a distinctive frequency. Because the amplitude of the SSVEP is modulated by attention such that attended stimuli elicit higher SSVEP amplitudes than do ignored stimuli, the method has been used to investigate the neural mechanisms of spatial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017